Abstract
This paper proposes a novel approach to the solution of optimal control problems under uncertainty (OCPUUs). OCPUUs are first cast in a general formulation that allows the treatment of uncertainties of different nature, and then solved with a new direct transcription method that combines multiple shooting with generalised polynomial algebra to model and propagate extended sets. The continuity conditions on extended sets at the boundary of two adjacent segments are directly satisfied by a bounding approach. The Intrusive Polynomial Algebra aNd Multiple shooting Approach (IPANeMA) developed in this work can handle optimal control problems under a wide range of uncertainty models, including nonparametric, epistemic, and imprecise probability ones. In this paper, the approach is applied to the design of a robust low-thrust trajectory to a Near-Earth Object with uncertain initial conditions. It is shown that the new method provides more robust and reliable trajectories than the solution of an analogous deterministic optimal control problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.