Abstract
Multifield data are common in visualization. However, reducing these data to comprehensible geometry is a challenging problem. Fiber surfaces, an analogy of isosurfaces to bivariate volume data, are a promising new mechanism for understanding multifield volumes. In this work, we explore direct ray casting of fiber surfaces from volume data without any explicit geometry extraction. We sample directly along rays in domain space, and perform geometric tests in range space where fibers are defined, using a signed distance field derived from the control polygons. Our method requires little preprocess, and enables real-time exploration of data, dynamic modification and pixel-exact rendering of fiber surfaces, and support for higher-order interpolation in domain space. We demonstrate this approach on several bivariate datasets, including analysis of multi-field combustion data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.