Abstract

Turbulent transport is regarded as one of the key issues in magnetic confinement nuclear fusion, both for tokamaks and stellarators. In this work, we show that a significant decrease in a microstability-based proxy, as opposed to a geometric one, for the turbulent heat flux, namely the quasilinear heat flux, can be obtained in an efficient manner by coupling stellarator optimization with linear gyrokinetic simulations. This is accomplished by computing the quasilinear heat flux at each step of the optimization process, as well as the deviation from quasisymmetry, and minimizing their sum, leading to a balance between neoclassical and the turbulent transport proxy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.