Abstract

Nitric oxide (NO) triggers marked osteoclast retraction which closely resembles that due to Ca2+. The effect of Ca2+has been attributed to a stimulated release of NO. Here, we show for the first time, by direct measurement with a microsensor, that osteoclasts do indeed produce NO and that this production is enhanced by a high Ca2+. We also show that the Ca2+ionophore, A23187, mimics the latter. Furthermore, osteoclasts on dentine produce more NO than osteoclasts on glass and NO release from dentine-plated osteoclasts is much less sensitive to stimulation by Ca2+. Finally, the microsomal Ca2+store-depleting agent, thapsigargin, attenuates NO release only from osteoclasts on glass, suggesting that stored Ca2+has the dominant effect in modulating NO release from non-resorbing cells. NO is a powerful inhibitor of bone resorption: a direct demonstration of its production is therefore strong evidence for a role in modulating osteoclast function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.