Abstract

Mechanical properties of lipidic membranes such as their bending rigidity are governing liposome morphology and play an important role in processes like membrane fusion and adhesion. Force versus deformation measurements are the most direct means to determine this, but so far experimental data is scarce and mainly stems from techniques that are limited to giant vesicles. We present atomic force microscope force spectroscopy as a method allowing force-deformation measurements of submicron vesicles. Bending rigidities of small unilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes (R<200 nm) can be derived from the force-deformation data using analytical models based on shell theory and are in good agreement with independent measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.