Abstract
A Direct Method for Optimization (DMO) is developed for investigating pressure rise and energy loss in a vaneless diffuser of a generic compressor used in shipboard air-conditioning systems. The scheme uses Reynolds Averaged Navier-Stokes (RANS) results and evaluates gradients of a predetermined objective function. The current Direct Method for Optimization differs from the popular Inverse Design Method in the process of obtaining final configurations and in the final configurations obtained. The Direct Method for Optimization achieves a final shape from maximizing/minimizing a nonlinear function; i.e., the objective function. Both gradient and non-gradient Direct Methods for Optimization are compared with respect to accuracy and efficiency. The coupled DMO/RANS optimization code is benchmarked using a plane turbulent diffuser also investigated by Zhang et al. using an adjoint method. The benchmark indicates that if a global optimum exists, the result should be independent of the methodologies or design parameters used. The DMO/RANS method is applied to redesign a 3-D centrifugal vaneless diffuser used in a modern generic compressor. The objective function is a composite function of the diffuser’s pressure rise and total energy loss. The new optimum diffuser has a minimum width at a location far beyond the conventional diffuser pinch point. The new diffuser also provides an efficient section for pressure recovery, which takes place after the minimum width location. Test data for the new diffuser validates the current approach at the design condition. Furthermore, improved performance is also recorded experimentally at off-design conditions for the optimized diffuser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.