Abstract

One fundamental challenge in exploiting direct methanol fuel cells (DMFCs) is the preparation of inexpensive, high active electrocatalysts, which are highly active and durable for the two half-reactions, i.e., the methanol oxidation reaction (MOR) at the anode and the oxygen reduction reaction (ORR) at the cathode. Platinum group metals-based catalysts have been known the governing dual-functional electrocatalysts based on the literature reports. But these catalysts are expensive and commercialize the DMFC less attractive. In addition to the high-cost, there are also methanol crossover, CO poisoning, long-term instability, and other problems as for Pt-based spurs. For the dual-role MOR & ORR catalysts, methanol crossover is inevitable to a certain extent on the current development of DMFC with losses in terms of cell voltage. In this regard, one strategy is to exploit high selective anodic/cathodic electrocatalysts to capitalize the energy density at a high concentration of methanol. According to the summary results, there are mainly two types of dual-role electrocatalysts: one is Pt-support/co-catalyst (designated as P-S/C) for MOR/ORR, the other is catalyst/co-catalyst (designated as C/C) for MOR/ORR. This paper aims to review the design and construction of the various dual-role catalysts and give some discussion briefly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call