Abstract

The self-heating propensity of biomass fuels is a major challenge to the large scale handling of e.g. wood pellets. The insulating properties in combination with exothermal processes sometimes lead to fires when larger volumes of wood pellets are stored. Recently, the thermal conductivity and specific heat of wood pellets have been investigated (Gou et al., 2013) through back-calculations of transient temperatures in wood bulk storage. Such properties are important in order to make simulations and predictions about safe storage and use. However, little information is available about the temperature dependence of these properties as well as the bulk properties of broken pellets, which is abundant in critical parts of a storage facility. In this study we show that the specific heat and thermal conductivity of wood pellets can be directly measured using the Transient Plane Source technique. We present data between 22 and 120°C for bulk wood pellets and investigate the change in conductivity for fine particle bulk material. In addition, we investigate the possibility of measuring on individual pellets while studying the moisture content dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.