Abstract

We report in situ measurements of irradiation-induced creep on amorphous (a-) Cu56Ti38Ag6, Zr52Ni48, Si, and SiO2. Micropillars 1 μm in diameter and 2 μm in height were irradiated with ∼2 MeV heavy ions during uniaxial compression at room temperature. The creep measurements were performed using a custom mechanical testing apparatus utilizing a nanopositioner, a silicon beam transducer, and an interferometric laser displacement sensor. We observed Newtonian flow in all tested materials. For a-Cu56Ti38Ag6, a-Zr52Ni48, a-Si, and Kr+ irradiated a-SiO2 irradiation-induced fluidities were found to be nearly the same, ≈3 GPa−1 dpa−1, whereas for Ne+ irradiated a-SiO2 the fluidity was much higher, 83 GPa−1 dpa−1. A fluidity of 3 GPa−1 dpa−1 can be explained by point-defect mediated plastic flow induced by nuclear collisions. The fluidity of a-SiO2 can also be explained by this model when nuclear stopping dominates the energy loss, but when the electronic stopping exceeds 1 keV/nm, stress relaxation in thermal spikes also contributes to the fluidity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.