Abstract

Photothermal calorimetry and fluorescence spectroscopy were used to determine the relaxations of the photoexcited singlet state of two PPV and polyfluorene oligomers, (E,E)-1,4-bis[(2-benzyloxy)styryl]benzene (PVDOP) and ter(9,9'-spirobifluorene) (TSBF). The decay rates of different S1 relaxation channels, which include intersystem crossing (ISC), radiative, and nonradiative decay can be determined by the combination of photoacoustic calorimetry (PAC) and the time-correlated single photon counting (TCSPC) technique. The triplet state energy level is determined by the phosphorescence (Ph) spectra recorded at 77 K. The ISC yields are approximately 3% and 6% for PVDOP and TSBF, respectively. The T1 to S0 transition decay rate is acquired by PAC and photothermal beam deflection (PBD) measurements. The triplet state decay rate is 17 and 21 ms(-1) at room temperature. The Ph intensity decay at 77 K shows that the triplet state lifetime increases by 4 orders of magnitude, as compared to room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.