Abstract

ABSTRACTDirect measurements of Mode-I critical stress intensity factor and crack tip displacements were conducted in the vicinity of atomically sharp edge cracks in polycrystalline silicon MEMS using our in situ Atomic Force Microscopy (AFM)/Digital Image Correlation (DIC) method. The average Mode-I critical stress intensity factor for various fabrication runs was 1.00 ± 0.1 MPa√m. The experimental crack tip displacement fields were in very good agreement with linear elastic fracture mechanics solutions. By means of an AFM, direct experimental evidence of incremental crack growth in polycrystalline silicon was obtained for the first time via spatially resolved crack growth measurements. The incremental crack growth in brittle polysilicon is attributed to its locally anisotropic polycrystalline structure which also results in different local and macroscopic (apparent) stress intensity factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call