Abstract

The goal of our study was to characterize the dynamics of intracellular oxygen during application of radiation at conventional (CONV) and FLASH dose rates and obtain evidence for or against the oxygen depletion hypothesis as a mechanism of the FLASH effect. The measurements were performed by the phosphorescence quenching method using probe Oxyphor PtG4, which was delivered into the cellular cytosol by electroporation. Intracellular radiochemical oxygen depletion (ROD) g-value for a dose rate of 100 Gy/s in the normoxic range was found to be 0.58 ± 0.03 μM/Gy. Intracellular ROD g-values for FLASH and CONV dose rates in the normoxic range were found to be nearly equal. As in solution-based studies, intracellular ROD was found to exhibit strong dependence on oxygen concentration in the range of 0 to ∼40 μM [O2]. Depletion of oxygen in cells in vitro by a clinical dose of proton radiation delivered as FLASH is unable to produce a transient state of hypoxia and, therefore, unable to induce radioprotection. The difference between ROD g-values for FLASH and CONV dose rates, detected previously in solutions-based experiments, disappears when measurements are conducted inside cells. Understanding this phenomenon should provide additional insight into the role of oxygen in FLASH radiation therapy and help to decipher the mechanism of the FLASH effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call