Abstract
Iron and nickel cosmic ray nuclei play a key role in the understanding of the acceleration and propagation mechanisms of charged particles in our Galaxy. In fact, iron and nickel are the most abundant nuclei among the heavy elements and provide favorable conditions for a low background measurement thanks to the negligible contamination from spallation of higher mass elements. CALET, operating on the ISS since 2015, has excellent capabilities of charge discrimination up to nickel and can measure the energy of cosmic ray nuclei thanks to a lead tungstate calorimeter providing a direct and precise measurement of heavy charged nuclei spectra. In this contribution, a direct measurement of iron and nickel nuclei spectra in the energy range from 10 GeV/n to 2 TeV/n and from 8.8 GeV/n to 240 GeV/n, respectively is presented. More than five years of data collected by CALET were used. A detailed study of systematic uncertainties is also illustrated. The measured spectra are compared with the ones measured by other experiments and are compatible with a single power law fit in the energy region from 50 GeV/n to 2 TeV/n and from 20 GeV/n to 240 GeV/n for iron and nickel respectively. Also, the ratio between nickel and iron spectra is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.