Abstract

Superporous agarose beads contain two sets of pores, diffusion pores and so-called superpores or flow pores, in which the chromatographic flow can transport substances to the interior of each individual bead [Gustavsson and Larsson, J. Chromatogr. A 734 (1996) 231]. The existence of pore flow may be proven indirectly by the chromatographic performance of beads but it has never been directly demonstrated in a chromatographic bed. In this report, pore flow was directly measured by following the movement of micro-particles (dyed yeast cells) in a packed bed. The passage of the micro-particles through the superpores and through the interstitial pores was followed by a microscope/video camera focused on beads which were situated four layers from the glass wall. The video recordings were subsequently used to determine the convective fluid velocities in both the superpores and the interstitial pores. Experiments were carried out with three different bead size ranges, all of which contained superporous beads having an average superpore diameter of 30 μm. The superpore fluid velocity as % of interstitial fluid velocity was determined to be 2–5% for columns packed with 300–500-μm beads (3% average value), 6–12% for columns packed with 180–300 μm beads (7% average value) and 11–24% for columns packed with 106–180-μm beads (17% average value). These data were compared to and found to agree with theoretically calculated values based on the Kozeny–Carman equation. In order to observe and accurately measure fluid velocities within a chromatographic bed, special techniques were adopted. Also, precautions were made to ensure that the experimental conditions used were representative of normal chromatography runs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.