Abstract

We tested the hypothesis that the vena contracta (VC) cross-sectional area in patients with mitral regurgitation (MR) can be reproducibly measured by real-time 3-dimensional (3D) echocardiography and correlates well with the volumetric effective regurgitant orifice area (EROA). Earlier MR repair requires accurate noninvasive measures, but practically, the VC area is difficult to image in 2-dimensional views, which are often oblique to it. 3D echocardiography can provide an otherwise unobtainable true cross-sectional view. In 45 patients with mild or greater MR, 44% eccentric, 2-dimensional and 3D VC areas were measured and correlated with the EROA derived from the regurgitant stroke volume. Real-time 3D echocardiography of the VC area correlated and agreed well with the EROA for both central and eccentric jets (r(2) = 0.86, SEE 0.02 cm(2), difference 0.04 +/- 0.06 cm(2), p = NS). For eccentric jets, 2-dimensional echocardiography overestimated the VC width compared with 3D echocardiography (p = 0.024) and correlated more poorly with the EROA (r(2) = 0.61 vs 0.85, p <0.001), causing clinical misclassification in 45% of patients with eccentric MR. The interobserver variability for the 3D VC area was 0.03 cm(2) (7.5% of the mean, r = 0.95); the intraobserver variability was 0.01 cm(2) (2.5% of the mean, r = 0.97). In conclusion, real-time 3D echocardiography accurately and reproducibly quantified the vena contracta cross-sectional area in patients with both central and eccentric MR. Rapid acquisition and intuitive analysis promote practical clinical application of this central, directly visualized, measure and its correlation with outcome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.