Abstract

Residual strains were measured in the porcine aorta. Segments were cut from the aorta perpendicular to its longitudinal axis. Microdots of water-insoluble black ink were sprinkled onto the transverse sectional surface of the segments in the no-load state. The segments were then cut radially, and sectional zero-stress states were approached. The coordinates of selected microdots (2-20 microns) were digitized from photographs taken in the no-load state and the zero-stress state. Residual strains in the transverse section were calculated from the displacement of the microdots. The circumferential residual strains on the inner wall and outer wall were calculated from the circumferential lengths in the no-load state and the zero-stress state. Results show that the circumferential residual strain is negative (compressive) in the inner layer of the aortic wall and positive (tensile) in the outer layer, whereas the radial residual strain is tensile in the inner layer and compressive in the outer layer. This residual strain distribution reduces the stress concentration in the aorta under physiological load. The experimental results compared well with theoretical estimations of a cylindrical model. Regional difference of the residual strain exists and is significant (P < 0.01), e.g., the circumferential residual strains on the inner wall of the ascending, descending thoracic, and abdominal regions of the aorta are -0.133 +/- 0.019, -0.074 +/- 0.020, and -0.046 +/- 0.017 (mean +/- SD), respectively. More radial cuts of a segment produced no significant additional strains. This means that an aortic segment after one radial cut can be considered as the zero-stress state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call