Abstract

Topological numbers can characterize the transition between different topological phases, which are not described by Landau's paradigm of symmetry breaking. Since the discovery of the quantum Hall effect, more topological phases have been theoretically predicted and experimentally verified. However, it is still an experimental challenge to directly measure the topological numbers of various predicted topological phases. In this Letter, we demonstrate quantum simulation of topological phase transition of a quantum wire (QW), by precisely modulating the Hamiltonian of a single nitrogen-vacancy (NV) center in diamond. Deploying a quantum algorithm of finding eigenvalues, we reliably extract both the dispersion relations and topological numbers. This method can be further generalized to simulate more complicated topological systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.