Abstract
Differential capacitance is a crucial parameter that connects the experimental observation of electrical double-layer behavior with theoretical models. However, the current number of reported differential capacitance values for deep eutectic solvents remains limited, making it challenging to verify or refute existing models. In this study, we systematically investigate the differential capacitance in deep eutectic solvents using chronoamperometry. By comparing metal and glassy carbon electrodes across various liquid combinations and ion concentrations, we observed a range of distinct capacitance characteristics. While some findings align with the existing mean-field model for ionic liquids, others clearly reflect the influence of electrode materials, with certain cases resisting full explanation by current theoretical models. These results underscore the importance of selecting appropriate electrode materials in experimental studies of such electrolytes and highlight the need for further theoretical advancements in understanding this complex liquid system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.