Abstract

By combining a state-of-the-art high-harmonic ultrafast soft X-ray source with field-free dynamic alignment, we map the angular dependence of molecular photoionization yields for the first time for a nondissociative molecule. The observed modulation in ion yield as a function of molecular alignment is attributed to the molecular frame transition dipole moment of single-photon ionization to the X, A and B states of N2(+) and CO2(+). Our data show that the transition dipoles for single-photon ionization of N2 and CO2 at 43 eV have larger perpendicular components than parallel ones. A direct comparison with published theoretical partial wave ionization cross-sections confirms these experimental observations, which are the first results to allow such comparison with theory for bound cation states. The results provide the first step toward a novel method for measuring molecular frame transition dipole matrix elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.