Abstract

The lack of methodologies which enable us to measure forces acting between nanomaterials is one of the factors limiting the full comprehension of their behavior and their more effective exploitation in new devices. Here we exploit the irreversible adsorption of surfactant-decorated nanoparticles at the air/water interface to investigate interparticle forces and the effect of the surfactant structure on them. We measured the interparticle repulsive forces as a function of the modulation of the interparticle distance by simultaneously performing compression isotherms and the grazing incidence small-angle X-ray scattering (GISAXS) structural characterization of the monolayers at water–vapor interfaces. Our results demonstrate that the short-range interparticle forces are strongly affected by the presence of the organic ligands, which are shown to be able to influence the interparticle repulsions even when added in micromolar amounts. In particular, we demonstrate the predominant steric nature of short-range forces, which are accounted for in terms of the compression-induced stretched-to-coiled conformational transition of the ligand hydrophobic tail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.