Abstract

Negative capacitance (NC) is now an attractive research topic owing to its potential applications. For better integration, investigation about the phenomenon and mechanism of NC in ferroelectric materials on semiconductor substrates is important. In this work, ferroelectric BaTiO3 (BTO) films are deposited on the low-resistance Si(100) substrates to constitute Pt/BTO/p-Si/Pt samples with the metal/ferroelectric/semiconductor/metal (MFSM) structure, on which NC are directly measured at low frequencies with a large DC bias. Because of the unique asymmetric interface, the NC value is tunable by the polarity and magnitude of the DC bias. Analysis based on the impedance and ferroelectric characteristics reveals that, in addition to the displacement current related to the electric polarization, there is also relaxation current caused by interface charge injection and oxygen vacancy migration. This work provides another idea for studying miniaturized and low-energy devices utilizing NC, which is of great significance for the development of silicon-based ferroelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.