Abstract
In indirect drive inertial confinement fusion (ICF) implosions hydrodynamic instability growth at the imploding capsule ablator-DT fuel interface can reduce fuel compressibility and inject ablator into the hot spot hence reducing hot spot pressure and temperature. As a mitigation strategy, a gentle acceleration of this interface is predicted by simulations and theory to significantly reduce this instability growth in the early stage of the implosion. We have performed high-contrast, time-resolved x-ray refraction enhanced radiography (RER) to accurately measure the level of acceleration as a function of the initial laser drive time history for indirect-drive implosions on the National Ignition Facility. We demonstrate a transition from no acceleration to 20±1.8 μm ns^{-2} acceleration by tweaking the drive that should reduce the initial instabilities by an order of magnitude at high modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.