Abstract

As interconnect dimensions decrease, the resistivity of copper increases dramatically because of electron scattering from surfaces, impurities, and grain boundaries (GBs), and threatens to stymie continued device scaling. Here we directly measure individual GB resistances in copper nanowires with a one-to-one correspondence to the GB structure. The resistance of high symmetry coincidence GBs is then calculated using a first-principle method. GB resistance is found to differ by orders of magnitude between different types of GB, with random GBs showing an intrinsically higher resistance compared to coincidence GBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.