Abstract

In the field of quantum information, the acquisition of information for unknown quantum states is very important. When we only need to obtain specific elements of a state density matrix, the traditional quantum state tomography will become very complicated, because it requires a global quantum state reconstruction. Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction, so direct measurement schemes have obtained extensive attention. Recently, some direct measurement schemes based on weak values have been proposed, but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment. Meanwhile, the post-selection process in the scheme will reduce the utilization of resources. In order to avoid these disadvantages, a direct measurement scheme without auxiliary states is proposed in this paper. In this scheme, we achieve the direct measurement of quantum states by using quantum circuits, then we extend it to the measurement of general multi-particle states and complete the error analysis. Finally, when we take into account the dephasing of the quantum states, we modify the circuits and the modified circuits still work for the dephasing case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.