Abstract

Intersubunit intramolecular electron transfer (IET) from FMN to heme is essential in the delivery of electrons required for O2 activation in the heme domain and the subsequent nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation that serves as the input state for reduction of FMN by electrons from NADPH and FAD in the reductase domain. To favor formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct murine inducible nitric oxide synthase (iNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of the IET between the FMN and heme domains in this construct was directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single domain heme oxygenase constructs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.