Abstract

We develop a linear-complexity direct matrix solution for the surface integral equation (IE)-based impedance extraction of arbitrarily shaped 3-D nonideal conductors embedded in a dielectric material. A direct inverse of a highly irregular system matrix composed of both dense and sparse matrix blocks is obtained in <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i> ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> ) complexity with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> being the matrix size. It outperforms state-of-the-art impedance solvers, be they direct solvers or iterative solvers, with fast central processing unit (CPU) time, modest memory consumption, and without sacrificing accuracy, for both small and large number of unknowns. The inverse of a 2.68-million-unknown matrix arising from the extraction of a large-scale 3-D interconnect having 128 buses, which is a matrix solution for 2.68 million right-hand sides, was obtained in less than 1.5 GB memory and 1.3 h on a single CPU running at 3 GHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.