Abstract

Understanding the interlayer charge coupling mechanism in a two-dimensional van der Waals (vdW) heterojunction is crucial for optimizing the performance of heterostructure-based (opto)electronic devices. Here, we report mapping the gate response of a multilayer WSe2/MoS2 heterostructure with locally different degrees of charge depletion through mobile carrier measurements based on electrostatic force microscopy. We observed ambipolar or unipolar behavior depending on the degree of charge depletion in the heterojunction under tip gating. Interestingly, the WSe2 on MoS2 shows gating behavior that is more efficient than that on the SiO2/Si substrate, which can be explained by the high dielectric environment and screening of impurities on the SiO2 surface by the MoS2. Furthermore, we found that the gate-induced majority carriers in the heterojunction reduce the carrier lifetime, leading to the enhanced interlayer recombination of the photogenerated carriers under illumination. Our work provides a comprehensive understanding of the interfacial phenomena at the vdW heterointerface with charge depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.