Abstract
Processes of holographic recording of surface relief structures using As2S3:Mn–Se multilayer nanostructures as registering media were studied in this paper. Optical properties of As2S3:Mn, Se layers, and As2S3:Mn–Se multilayer nanostructures were investigated. Values of optical bandgaps were obtained from Tauc dependencies. Surface relief diffraction gratings were recorded. Direct one-stage formation of surface relief using multilayer nanostructures is considered. For the first time, possibility of direct formation of magnetic relief simultaneous with surface relief formation under optical recording using As2S3:Mn–Se multilayer nanostructures is shown.
Highlights
Chalcogenide glasses (ChGs) are typical representatives of non-oxide glasses
ChGs possess unique characteristics which are different from other glasses: photoinduced phenomena, broad optical transmission window, high linear refractive index (n ≈ 2–3), and high optical non-linearity
ChGs based on sulfur, selenium, and tellurium typically transmit up to around 10, 15, and 20 μm, respectively [5]
Summary
Chalcogenide glasses (ChGs) are typical representatives of non-oxide glasses. ChGs are very promising versatile functional materials for use in optoelectronics as high-speed optical elements, for applications such as data processing devices, electronic switches, and other optical elements. ChGs possess unique characteristics which are different from other glasses: photoinduced phenomena, broad optical transmission window, high linear refractive index (n ≈ 2–3), and high optical non-linearity (around two orders of magnitude higher than silica, this makes them suitable for ultra-fast switching in telecommunication systems). These materials and their properties were reviewed in a number of books and review papers [1,2,3,4,5,6]. Such modifications can be performed partially by the special technologies (cooling rate, thin film deposition, exposure by light, e-beams or ion beams), by modification, or by creating complex artificial structures [7,8,9,10,11,12,13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.