Abstract
AbstractA novel approach for the direct synthetic diamond–GaN integration via deposition of the high‐quality nanocrystalline diamond films directly on GaN substrates at temperatures as low as 450–500 °C is reported. The low deposition temperature allows one to avoid degradation of the GaN quality, which is essential for electronic applications The specially tuned growth conditions resulted in the large crystalline diamond grain size of 100–200 nm without coarsening. Using the transient “hot disk” measurements it is demonstrated that the effective thermal conductivity of the resulting diamond/GaN composite wafers is higher than that of the original GaN substrates at elevated temperatures. The thermal crossover point is reached at ≈95–125 °C depending on the thickness of the deposited films. The developed deposition technique and obtained thermal characterization data can lead to a new method of thermal management of the high power GaN electronic and optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.