Abstract

To identify the location of a domain of the beta-subunit of Escherichia coli RNA polymerase (RNAP) on the three-dimensional structure, we developed a method to tag a nonessential surface of the multisubunit enzyme with a protein density easily detectable by electron microscopy and image processing. Four repeats of the IgG-binding domain of Staphylococcus aureus protein A were inserted at position 998 of the E. coli RNAP beta-subunit. The mutant RNAP supported E. coli growth and showed no apparent functional defects in vitro. The structure of the mutant RNAP was determined by cryoelectron microscopy and image processing of frozen-hydrated helical crystals. Comparison of the mutant RNAP structure with the previously determined wild-type RNAP structure by Fourier difference analysis at 20-A resolution directly revealed the location of the inserted protein domain, thereby locating the region around position 998 of the beta-subunit within the RNAP three-dimensional structure and refining a model for the subunit locations within the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.