Abstract

The flourishing expansion of the lithium-ion batteries (LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO4 cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ∼90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.