Abstract

We present an analytical theory that reveals the importance of the longitudinal laser electric field in the course of the resonant acceleration of relativistic electrons by a tightly confined laser beam. It is shown that this laser field component always counteracts the transverse one and effectively decreases the final energy gain of electrons via the direct laser acceleration (DLA) mechanism. This effect is demonstrated by carrying out particle-in-cell simulations of the DLA of the electrons injected into the accelerating phase of the plasma wake. It is shown that the electron energy gain from the wakefield is substantially compensated by the quasiresonant energy loss to the longitudinal laser field component. The analytically obtained scalings and estimates are in good agreement with the results of the numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.