Abstract

Reaction Me{sub 2}COH + Ph{sub 2}CO {yields} Me{sub 2}CO + Ph{sub 2}COH (5) was studied by laser flash photolysis under such experimental conditions where the changes in the concentrations of ketyl radicals with reaction time were controlled by this radical transformation process. Diphenylketyl radical concentration profiles were obtained by monitoring transient absorption at 540 nm and the rate coefficient k{sub 5} was extracted from that part of the concentration trajectory which was determined solely by reaction 5. Thus, k{sub 5} = (3.6 {plus minus} 0.6) {times} 10{sup 5} dm{sup 3} mol{sup {minus}1} s{sup {minus}1} was determined at 298 K in acetonitrile, which is higher than the two recently reported values derived from quantum yields measured under steady-state conditions. A reaction mechanism for the radical transformation process (5) is proposed in which hydrogen-bonded species formed from ketyl radical and benzophenone participate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.