Abstract

The effect of signal enhancement of elements with ionization potentials in the range from 9 to 11 eV by carbon-containing compounds is a well-known phenomenon in inductively coupled plasma mass spectrometry (ICPMS). It has traditionally been exploited through the addition of organic solvents to the sample matrix or to the mobile phase to improve sensitivity. In the present work, aqueous solutions of volatile carbon compounds (acetone, methanol and acetic acid) were directly introduced into the thermostatted spray chamber rather than being added to the sample matrix. It is presumed that no aerosol is produced from these solutions and only vapors of organic compounds are swept into the plasma together with the sample aerosol. When a 0.40 mol l − 1 aqueous solution of acetone was introduced directly into the spray chamber, the signals for arsenic and selenium were enhanced by a factor of 4.2. The usefulness of this approach was demonstrated through the achievement of lower instrumental detection limits for selenium at m/z 82 (0.1 ng ml − 1 ) compared to the system without direct introduction of volatile carbon compounds (0.5 ng ml − 1 ). The method was successfully applied in the determination of traces of selenium in natural water, urine and bovine liver reference material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call