Abstract

Carbonic anhydrase IX (CA IX), a tumor-associated metalloenzyme, represents a validated target for cancer therapy and diagnostics. Herein, we report the inhibition properties of isomeric families of sulfonamidopropyl-dicarba-closo-dodecaboranes group(s) prepared using a new direct five-step synthesis from the corresponding parent cages. The protocol offers a reliable solution for synthesis of singly and doubly substituted dicarba-closo-dodecaboranes with a different geometric position of carbon atoms. The closo-compounds from the ortho- and meta-series were then degraded to corresponding 11-vertex dicarba-nido-undecaborate(1-) anions. All compounds show in vitro enzymatic activity against CA IX in the low nanomolar or subnanomolar range. This is accompanied by clear isomer dependence of the inhibition constant (Ki ) and selectivity towards CA IX. Decreasing trends in Ki and selectivity index (SI ) values are observed with increasing separation of the cage carbon atoms. Interactions of compounds with the active sites of CA IX were explored with X-ray crystallography, and eight high-resolution crystal structures uncovered the structural basis of inhibition potency and selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.