Abstract
This letter proposes a novel approach to directly formulate the prediction intervals of wind power generation based on extreme learning machine and particle swarm optimization, where prediction intervals are generated through direct optimization of both the coverage probability and sharpness, without the prior knowledge of forecasting errors. The proposed approach has been proved to be highly efficient and reliable through preliminary case studies using real-world wind farm data, indicating a high potential of practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.