Abstract

The titaniumdioxide(TiO2 )photocatalyst is only active under UV irradiation due to its wide-gap nature. A novel excitation pathway denoted as interfacial charge transfer (IFCT) has been reported to activate copper(II) oxide nanoclusters-loaded TiO2 powder (Cu(II)/TiO2 )under visible-light irradiation for only organic decomposition (downhill reaction) so far. Here, the photoelectrochemical study shows that the Cu(II)/TiO2 electrode exhibits a cathodic photoresponse under visible-light and UV irradiation. It originates from H2 evolution on the Cu(II)/TiO2 electrode, while O2 evolution takes place on the anodic side. Based on the concept of IFCT, a direct excitation of electrons from the valence band of TiO2 to Cu(II) clusters initiates the reaction. This is the first demonstration of a direct interfacial excitation-induced cathodic photoresponse for water splitting without any addition of a sacrificial agent. This study is expected to contribute to the development of abundant visible-light-active photocathode materials for fuel production (uphill reaction).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call