Abstract

This paper proposes the direct connection of different configurations of resistive sensor bridges to a microcontroller without any intermediate active component. Such a direct interface circuit relies on measuring the discharging time of a RC network that includes the resistances of the sensor bridge. For quarter-, half-, and full-bridge circuits, we combine the discharging times to estimate the fractional resistance change x of the bridge arms. Experimental results for half- and full-bridge circuits emulated by resistors yield a nonlinearity error below 0.3%FSR (full-scale range) for x between 0 and 0.1 and an effective resolution of 11 bit. Measurements on two commercial magnetoresistive sensors yield higher nonlinearity errors: 1.8%FSR for an AMR (Anisotropic Magnetoresistive) sensor and 5.8%FSR for a GMR (Giant Magnetoresistive) sensor, which are mainly due to the nonlinearity of the sensors themselves. Therefore, the nonlinearity of the measurement is limited by the sensors, not by the proposed interface circuit and linearisation algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.