Abstract
Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3-mediated platelet functions. We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Arteriosclerosis, Thrombosis, and Vascular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.