Abstract

Background: The glycopeptide antibiotic vancomycin complexes DAla- DAla termini of bacterial cell walls and peptidoglycan precursors and interferes with enzymes involved in murein biosynthesis. Semisynthetic vancomycins incorporating hydrophobic sugar substituents exhibit efficacy against DAla- DLac-containing vancomycin-resistant enterococci, albeit by an undetermined mechanism. Contrasting models that invoke either cooperative dimerization and membrane anchoring or direct inhibition of bacterial transglycosylases have been proposed to explain the bioactivity of these glycopeptides. Results: Affinity chromatography has revealed direct interactions between a semisynthetic hydrophobic vancomycin (DCB-PV), and select Escherichia coli membrane proteins, including at least six enzymes involved in peptidoglycan assembly. The N( 4)-vancosamine substituent is critical for protein binding. DCB-PV inhibits transglycosylation in permeabilized E. coli, consistent with the observed binding of the PBP-1B transglycosylase-transpeptidase. Conclusions: Hydrophobic vancomycins interact directly with a select subset of bacterial membrane proteins, suggesting the existence of discrete protein targets. Transglycosylase inhibition may play a role in the enhanced bioactivity of semisynthetic glycopeptides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call