Abstract

A direct integration method (DIM) for time-delayed control (TDC) is proposed in this research. For a second-order dynamic system with time-delayed controllers, a Volterra integral equation of the second kind is used instead of a state derivative equation. With the proposed DIM where matrix exponentials are avoided, semi-analytical representation of the Floquet transition matrix for stability analysis can be derived, the stability region on the parametric space comprising control variables can also be plotted. Within this stability region, optimal control variables are subsequently obtained using a multilevel conjugate gradient optimization method. Further simulation examples demonstrated the superiority of the proposed DIM in terms of computational efficiency and accuracy, as well as the effectiveness of the optimization-based controller design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.