Abstract

Abstract Among the promising techniques within Additive Manufacturing (AM), Direct Ink Writing (DIW) stands out for its ability to work with a wide range of materials, including polymers, ceramics, glass, metals, and cement. However, DIW encounters a significant challenge in creating complex tubular structures, such as vascular scaffolds with micro scale features. To address this challenge, our research investigates a novel method known as Additive Lathe Direct Ink Writing (AL-DIW). AL-DIW entails the precise dispensing of ink onto a rotating mandrel to fabricate intricate hollow tubular structures with overhanging geometries. In this research, we present a series of test cases involving tubular structures, comprising straight-line patterns, curved line designs, and complex stent configurations, to underscore the efficacy of this technique in crafting hollow tubular geometries with micro-scale features. This study not only highlights the capabilities of AL-DIW but also contributes to the broader advancement of additive manufacturing techniques for various applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call