Abstract

Ultra-high temperature ceramics (UHTCs) are of interest for thermally- and/or mechanically- extreme environments because of their high melting temperatures (> 3000 °C) and ablation resistance. More widespread use is limited by low fracture toughness and inability to be processed into complex-shaped components. Here, we report the production of fiber-reinforced UHTC matrix composites (UHTCMCs) formed via the additive manufacturing technique of direct ink writing (DIW). Slurry 'inks' were developed containing up to 47.5 vol% of the UHTC zirconium diboride (ZrB 2 ), up to 10 vol% chopped silicon carbide fiber (SiC f ), and a silicon carbide (SiC) precursor polymer. Lattice structures and flexural specimens were printed and pyrolyzed to form UHTCMCs with aligned (relative to the print direction) SiC f in the ZrB 2 – SiC matrix. Flexural strength of fiber-containing parts is presented, and fiber alignment due to deposition is analyzed with X-ray computed tomography. Defects that occurred during the DIW process, and their probable causes and mitigation strategies are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call