Abstract

Intermediate neglect of differential overlap (INDO) is the most commonly utilized semiempirical technique for performing excited state calculations on large organic systems such as organic semiconductors and fluorescent dyes. The calculations are typically done at the singles-configuration interaction (SCI) level. Direct methods provide a more efficient means of performing configuration interaction (CI) calculations, and the computational trade offs associated with various approaches to direct-CI theory have been well characterized for ab initio Hamiltonians and high-order CI. However, the INDO and SCI approximations lead to a new set of trade offs. In particular, application of the electron-electron interactions in the atomic basis leads to savings in computational time that scale as the number of atomic orbitals, which for a large organic system can be two to three orders of magnitude. These savings are largest when only a few low-lying excited states are generated and when a full SCI basis, which includes excitations between all filled and empty molecular orbitals, is used. In addition, substantial memory savings are achieved in the direct method by avoiding the evaluation of the two electron integrals in the molecular orbital basis. The method is demonstrated by calculating the absorption spectrum of a poly(paraphenylenevinylene) oligomer containing 16 phenyl rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.