Abstract

Conventional nonviral gene delivery methods suffer from the toxicity of the cationic nature of polymeric carriers. There is a significant need for a new method of gene delivery that overcomes the limitations and allows targeted gene delivery. In this study, we have developed a new method to incorporate functional peptides into DNA without the need for chemical conjugations by utilizing a ligand-to-metal charge transfer (LMCT) transition, which occurs between divalent metal ions and the sulfhydryl group in cysteine. To apply the LMCT transition to the incorporation of cysteine-containing targeting peptides into DNA, divalent metal ions must be first introduced to DNA. Zn2+ ions spontaneously intercalate into the DNA base pairs in the pH range of 7.0-8.5, resulting in the conversion of normal B-DNA to metal-bound DNA (M-DNA). We found that the Zn2+ ions present in M-DNA could interact with the sulfhydryl groups in cysteines of targeting peptides through the LMCT transition, and the M-DNA/peptide complex could specifically transfect the target cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.