Abstract

The use of an optical probe for fluorescence detection combined with direct immersion single-drop microextraction has been demonstrated as an innovative approach. The optical probe served both as a drop holder for extractant and as a measuring device which made it possible to eliminate the use of cuvettes. A laser and a light emitting diode (LED) were tested as possible light sources. Both of them showed comparable results. However, given the much smaller half-band width of the laser radiation, its use has proven to be preferable since background correction can be eliminated. Direct immersion single-drop microextraction of an ionic association complex of rhodamine 6G with picric acid with subsequent fluorescent detection (λex was 532 nm and 525 nm for laser and LED, respectively; λem was 560 nm for both laser and LED) was used a model system to evaluate the new approach. The extractant phase was a 55 μL amyl acetate microdrop fixed in the optical part of the probe. LOD, LOQ and linear calibration range were found as 0.14, 0.48 and 0.5–10 nmol L−1, and 0.15, 0.50 and 0.5–5 nmol L−1 for laser and LED light sources, respectively. The accuracy of the method was assessed by analyzing real water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call