Abstract

A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.