Abstract

Core-shell structure is an obvious concept to suppress surface-related deactivations in lanthanide-doped upconversion nanoparticles (UCNPs). However, no direct observation of atomic-scale surface restoration, which can improve the upconversion photoluminescence, has been reported. Here, we use aberration-corrected high-angle annular dark field scanning transmission electron microscopy to study the surface condition of KLu2F7:Yb3+,Er3+ bare core UCNPs. Due to the very thin and uniform thickness of the UCNPs, we observe unambiguously that the recovery from surface defects enhances upconversion photoluminescence. Furthermore, the realization of dominant green lasing emission under pulsed laser excitation confirms the high crystallinity of the UCNPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.