Abstract
Pyridine(Py)-modified Keggin-type mono-vanadium-substituted heteropoly acids (PynPMo11V, n = 1–4) were prepared by a precipitation method as organic/inorganic hybrid catalysts for direct hydroxylation of benzene to phenol in a pressured batch reactor and their structures were characterized by FT-IR. Among various catalysts, Py4PMo11V exhibited the highest catalytic activity (yield of phenol 9.0%) with the high selectivity for phenol, without observing the formation of catechol, hydroquinone and benzoquinone in the reaction with 80 vol% aqueous acetic acid, molecular oxygen and ascorbic acid used as the solvent, oxidant and reducing reagent, respectively. The influences of the reaction temperature, the pressure of oxygen, the amount of ascorbic acid, the amount of catalyst, and the reaction time on the yield of phenol were investigated to obtain the optimal reaction conditions for phenol formation. Pyridine can greatly promote the catalytic activity of the Py-free catalyst (H4PMo11VO40), mostly because the organic π electrons in the hydrid catalyst may extend their conjugation to the inorganic framework of heteropoly acid and thus dramatically modify the redox properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.