Abstract

Several metal phosphate supported platinum catalysts (Pt/AlP, Pt/TiP, Pt/ZrP and Pt/NbP) have been synthesized for the direct hydrogenolysis of glycerol to produce bio-propanols performed under mild reaction conditions. The catalysts were screened for its activity towards production of propanols from glycerol hydrogenolysis and the reaction has been optimized by studying various reaction parameters such as effect of platinum loading, reaction temperature, hydrogen flow rate, glycerol concentration and reaction time. Among the catalysts investigated, 2Pt/TiP presented a remarkable catalytic performance for vapour phase hydrogenolysis of glycerol with 100% conversion of glycerol and 97% selectivity to total propanols (1-propanol + 2-propanol) at 220 °C and atmospheric pressure. The high efficiency of 2Pt/TiP catalyst is probably be due to the strong acidity of catalyst and the uniform dispersion of small Pt particles on surface of TiP that could enable the dehydration-hydrogenation route of glycerol hydrogenolysis. Further, the structural characteristics of used catalyst have been investigated in order to understand the stability of the catalyst. Therefore, a more economical and sustainable approach of producing value added propanols from bio-derived glycerol over highly efficient catalytic system is herein presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call